首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1627篇
  免费   100篇
  国内免费   91篇
  2023年   9篇
  2022年   22篇
  2021年   21篇
  2020年   37篇
  2019年   28篇
  2018年   38篇
  2017年   28篇
  2016年   42篇
  2015年   49篇
  2014年   65篇
  2013年   89篇
  2012年   43篇
  2011年   30篇
  2010年   44篇
  2009年   50篇
  2008年   85篇
  2007年   68篇
  2006年   79篇
  2005年   71篇
  2004年   69篇
  2003年   59篇
  2002年   63篇
  2001年   52篇
  2000年   39篇
  1999年   43篇
  1998年   42篇
  1997年   49篇
  1996年   43篇
  1995年   37篇
  1994年   42篇
  1993年   50篇
  1992年   32篇
  1991年   37篇
  1990年   25篇
  1989年   24篇
  1988年   34篇
  1987年   23篇
  1986年   23篇
  1985年   34篇
  1984年   32篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   11篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1818条查询结果,搜索用时 93 毫秒
91.
Osmoregulated periplasmic glucans (OPGs) are major periplasmic constituents of Gram-negative bacteria. The role of OPGs has been postulated in symbiotic as well as pathogenic host–microorganism interactions. Here, we report the role of OPGs from Salmonella enterica serovar Typhimurium during growth and biofilm formation in leafy-green vegetable wash water. The opgGH mutant strain, which was defective in OPG biosynthesis, initiated the growth at a slower rate in wash waters obtained from spinach, lettuce and green collard and severely impaired biofilm formation. The lack of OPG synthesis did not influence biofilm formation by the opgGH mutant in low-nutrient low-osmolarity laboratory media. In coculture experiments initiated with equal proportions of cells, the opgGH mutant was outnumbered by the wild-type strain under the planktonic as well as the biofilm growth conditions. The opgGH mutant strain poorly colonized mouse organs when introduced orally along with the wild-type strain. This is the first report demonstrating the role of OPGs of Salmonella in competitive colonization of biofilms, planktonic cultures and mouse organs.  相似文献   
92.
Multiple shoots of Spilanthes acmella Murr. were induced from hypocotyl segments obtained from 1-week-old seedlings on Murashige and Skoog's (MS) medium containing benzyladenine (BA), isopentenyl adenine, and naphthaleneacetic acid (NAA). High frequency shoot proliferation (95 %) and maximum number of shoots per explant (10 ± 0.6) were recorded with 0.5 mg dm–3 BA in combination with 0.1 mg dm–3 NAA. A proliferation was achieved by repeatedly subculturing the nodal segments on shoot multiplication medium. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing indole-3-butyric acid (1.0 mg dm–3). 95 % of the plantlets were successfully acclimatized and established in soil. Transplanted plantlets showed normal flowering without any morphological variation.  相似文献   
93.
The effects of nutrient-solution cooling and PEG addition to the nutrient solution on the phytohormone content, the rate of leaf growth, leaf extensibility under the influence of external mechanical action, osmotic potential, and transpiration were studied in seven-day-old wheat plants. Leaf growth rapidly ceased, and the transpiration rate was reduced in both treatments. Growth cessation induced by PEG was transient, and growth resumption was preceded by an increase in the leaf extensibility. The functional role of auxin accumulation in plant shoots in the control of extensibility as well as the relationship between the ABA accumulation and a decrease in the cytokinin content, on the one hand, and reduced transpiration, on the other hand, under stress conditions are discussed.  相似文献   
94.
四个水稻 (OryzasativaL .)品种“IR72”、“特三矮 2号”、“桂朝 2号”和“Ⅱ优 44 80”在田间栽于含 35 μmol mol和 6 0 μmol molCO2 的塑料大棚中 ,自然光照。高浓度CO2 下供试水稻品种的光合速率变化表现为提高型 (“IR72”、“特三矮 2号”)、稳定型 (“桂朝 2号”的Pn几无变化 )和下调型 (“Ⅱ优 44 80”)。生长速率、穗重、由Δ1 3 C计算而得的长期水分利用效率和清除DPPH· 自由基的能力皆增加。除“Ⅱ优 44 80”外 ,其他 3个品种明显增高总生物量。供试品种的穗重 总生物量比不同程度地受到高浓度CO2 的改变。叶片段经PEG渗透胁迫后 ,不同的生长于高浓度CO2 者的电解质渗漏率较小。结果表明高浓度CO2 可改变水稻的光合作用和水分关系特性 ,品种间不同的响应显示了选育适于未来高浓度CO2 下具有高产和抗逆性品种的可能性。  相似文献   
95.
The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the ends of dhn1 by PCR, the expression vector for the fusion protein DHN1-mGFP4 was constructed by cloning dhn1 into plasmid pBIN-35SmGFP4. Then the DHN1-mGFP4 expression vector was transformed into A. delicisoa suspension cells by micropro-jectile bombardment method. Bright green fluorescence of GFP which shows the high-level expression of DHN1-mGFP4 was visualized after culture for 10 h. However, the green fluorescence was only located within the nucleus. By increasing the culture medium osmotic potential, the green fluorescence was visualized in the cytoplasm (mainly around the plasma membranes). The generation of GFP fluorescence in the cytoplasm was also promoted by increasing the medium osmotic potential. Moreover, GFP green fluorescence was abolished by protein synthesis inhibitor dicyclo  相似文献   
96.
Lavandin (Lavandula dentata) axillary buds were grown in Linsmaier-Skoog (LS) medium solidified with 10 % bactoagar (control) and supplemented with 0.1 mg dm–3 benzyladenine (BA), 0.1 mg dm–3 indolebutyric acid (IBA) or both plant growth regulators. In the studied conditions the axillary buds developed into plantlets. The addition of BA inhibited the formation of glands by 44 % as compared with the control plantlets and also inhibited their development: these plantlets had the highest number of unbroken glands (in pre-secretory state) when compared with plantlets grown in the other conditions. The presence of BA stimulated chloroplast formation, and increased the content of essential oils by 150 % with respect to the control plantlets. It also increased their secretion, and the number of lipid droplets in the chloroplasts, cytosol and plasmalemma. On the contrary, the presence of IBA decreased the essential oil concentration in plantlets by 31 % when compared with the control ones and inhibited their secretion capacity.  相似文献   
97.
An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35 °C day/28 °C night) and compared to control conditions (17 °C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.  相似文献   
98.
Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX‐homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark‐phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position.  相似文献   
99.

Background

Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation.

Scope

This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth.

Conclusions

Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号